AI开发平台ModelArts
ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。
AI开发核心功能
数据管理
最多可节约80%的人工数据处理成本
涵盖图像、声音、文本、视频4大类数据格式9种标注工具,同时提供智能标注、团队标注极大提高标注效率;支持数据清洗,数据增强,数据检验等常见数据处理能力;数据集多版本灵活可视化管理,支持数据集导入导出,轻松用于ModelArts的模型开发和训练。
开发管理
可使用本地开发环境(IDE)对接云上服务
ModelArts除了可以在云上通过(管理控制台)界面开发外,同时还提供了Python SDK功能,您可通过SDK在任意本地IDE中使用Python访问ModelArts, 包括创建、训练模型,部署服务,更加贴近您的开发习惯。
训练管理
更快速训练高精度的模型
以大模型(EI-Backbone)为核心的普适AI建模工作流的3大优势::
1、基于小样本数据训练高精度模型,大量节约数据标注成本;
2、全空间网络架构搜索和自动超参优化技术可自动快速提升模型精度;
3、加载EI-Backbone集成的预训练模型后,模型训练到部署的流程可从数周缩短至几分钟,大幅降低训练成本。
模型管理
支持对所有迭代和调试的模型进行统一管理
AI模型的开发和调优往往需要大量的迭代和调试,数据集、训练代码或参数的变化都可能会影响模型的质量,如不能统一管理开发流程元数据,可能会出现无法重现最优模型的现象。ModelArts支持4个场景的导入模型:从训练中选择,从模板中选择,从容器镜像中选择,从OBS中选择。
部署管理
一键部署至端、边、云
ModelArts支持在线推理、批量推理、边缘推理多种形态。同时,高并发在线推理满足线上大业务量诉求,高吞吐批量推理能快速解决沉积数据推理诉求,高灵活性边缘部署使推理动作可以在本地环境完成。
镜像管理
自定义镜像功能支持自定义运行引擎
ModelArts底层采用容器技术,您可自行制作容器镜像并在ModelArts上运行。自定义镜像功能支持自由文本形式的命令行参数和环境变量,灵活性比较高,便于支持任意计算引擎的作业启动需求。